Term Information

Effective Term

Spring 2017

General Information

Course Bulletin Listing/Subject Area	Physics
Fiscal Unit/Academic Org	Physics - D0684
College/Academic Group	Arts and Sciences
Level/Career	Graduate, Undergraduate
Course Number/Catalog	5501
Course Title	Quantum Mechanics II
Transcript Abbreviation	QM 2
Course Description	Harmonic oscillator, time-independent and time-dependent perturbation theory, addition of angular momenta, fine and hyperfine structure of hydrogen, identical particles, periodic systems, modern physics applications of quantum mechanics.
Semester Credit Hours/Units	Fixed: 4

Offering Information

Length Of Course	14 Week
Flexibly Scheduled Course	Never
Does any section of this course have a distance education component?	No
Grading Basis	Letter Grade
Repeatable	No
Course Components	Lecture
Grade Roster Component	Lecture
Credit Available by Exam	No
Admission Condition Course	No
Off Campus	Never
Campus of Offering	Columbus

Prerequisites and Exclusions

Prerequisites/Corequisites Exclusions 5500; Math 2174 or 2415 or 2255 or 5520H; or permission of instructor Not open to students with credit for 5501H or 633

Cross-Listings

Cross-Listings

Subject/CIP Code

Subject/CIP Code Subsidy Level Intended Rank 40.0801 Baccalaureate Course Junior, Senior, Masters, Doctoral

Requirement/Elective Designation

The course is an elective (for this or other units) or is a service course for other units

Course Details

Course goals or learning objectives/outcomes	• Harmonic Oscillator: Students will be able to use raising and lowering operators to compute a
-	full range of observable results and their probabilities.
	Perturbation Theory: Students will be able to approximate the effects of time-independent
	and time-dependent perturbations, understanding the conditions under which interactions
	can be treated as perturbations.
	Addition of Angular Momentum: Students will understand when and how to employ the
	addition of angular momenta, being able to convert back and forth between coupled
	and uncoupled bases with the use of Clebsch-Gordon tables.
	Identical Particles: Students will be able to solve a wide variety of problems involving
	two identical particles and from this appreciate the drastically different collective behavior
	of fermions and bosons.
	Periodic Systems: Students will understand how Bloch states emerge from atomic
	states in simple periodic systems. They will have a qualitative understanding of
	collective phenomena that emerge from the dispersion relations for Bloch states.
	 Modern Applications: Students will gain an appreciation of how quantum mechanics
	permeates all of modern physics. Specific examples chosen by the instructor
	from atomic, condensed matter, nuclear, particle physics and quantum information theory.
Content Topic List	• Harmonic oscillator, time-independent and time-dependent perturbation theory, magnetic interactions in hydrogen,
	addition of angular momenta, identical particles, periodic systems, examples from modern physics.
Attachments	● 5501_syllabus_ASC.docx: Physics 5500 syllabus
	(Syllabus. Owner: Perry,Robert James)
Comments	• We have a second semester of quantum mechanics for honors students and need a non-honors version to meet the

Workflow Information

Status	User(s)	Date/Time	Step
Submitted	Perry,Robert James	04/28/2016 01:00 PM	Submitted for Approval
Approved	Perry,Robert James	06/21/2016 12:07 PM	Unit Approval
Approved	Haddad,Deborah Moore	06/21/2016 12:21 PM	College Approval
Pending Approval	Nolen,Dawn Vankeerbergen,Bernadet te Chantal Hanlin,Deborah Kay Jenkins,Mary Ellen Bigler Hogle,Danielle Nicole	06/21/2016 12:21 PM	ASCCAO Approval

needs of many Physics and Engineering Physics majors. (by Perry, Robert James on 04/28/2016 01:00 PM)

Physics 5501 – Quantum Mechanics II

Credits: 4 undergraduate credit hours

Instructor: <Name, contact information>, <Office Hours>, or set up appointment.

Textbook: Quantum Mechanics, David H. McIntyre

Course Description: This course covers multi-particle quantum systems, approximation techniques for a wide variety of simple, time-dependent and time-independent quantum systems, and applications of quantum mechanics in several areas of modern physics.

Prerequisites: Physics 5500 (C+ or better), Math 2174, 2415, 2255; or permission of instructor.

Grading: Weekly homework assignments (35% of grade), two midterm exams (2x20% of grade) and a final exam (25% of grade). It is expected that you will spend about 3 hours outside of class for each lecture hour (12 hours/week) on homework assignments and studying for exams.

Homework assignments: Every week, you will be assigned problems in which you will provide detailed, written solutions. These assignments are to be done on paper and <u>handed in at the beginning of lecture on the due date</u>. The assignments are posted on <website>, and include problems written by the instructor or derived from the text or other sources, and small assignments using simulations and/or using computer applications such as Mathematica.

Many of the assigned problems will be challenging, and you are encouraged to work with classmates to help determine solutions to the homework; <u>however you must</u> <u>write your own solutions</u>—direct copying of solutions from classmates (or other sources) <u>will be submitted to the Committee on Academic Misconduct</u>. Write up you own work to turn in!

Academic Misconduct: It is the responsibility of the Committee on Academic Misconduct to investigate or establish procedures for the investigation of all reported cases of academic misconduct. The term "academic misconduct" includes all forms of student misconduct wherever committed; illustrated by, but not limited to, cases of plagiarism and dishonest practices in connection with examinations. Instructors shall report all instances of alleged academic misconduct to the committee (Faculty Rule 3335-5-487). For additional information, see Code of Student Conduct at http://studentlife.osu.edu/csc/.

Disability Services: Students with disabilities that have been certified by the Office for Disability Services will be appropriately accommodated and should inform the instructor as soon as possible of their needs. The Office of Disability Services is located in 150 Pomerene Hall, 1760 Neil Avenue; telephone 614-292-3307, TDD 614-292-0901; <u>http://www.ods.ohio-state.edu/</u>.

5501 Class Schedule		
	Harmonic Oscillator	
	Chapter 9	
Week 1		
	Chapter 9	
Week 2		
	HW #1 due	
	Time Independent Perturbation Theory	
	Chapter 10	
Week 3	HW #2 due	
	Time Independent Perturbation Theory	
	Chapter 10	
XXX 1 4		
Week 4	HW #3 due	
	Chapter 11	
Week 5	HW #4 due	
	Hydrogen perturbations: Fine Structure, Spin Orbit, Zeeman	
	Chapter 12	
Week 6	HW #5 due	
	1 st midterm	
	Identical Particles	
	Chapter 15	
Week 7	HW #6 due	
	Time Dependent Perturbation Theory	
	Chapter 14	
Week 8	HW #7 due	
	Time Dependent Perturbation Theory: Applications	
	Chapter 14	
Week 9	HW #8 due	
	Spring Break	
	Periodic Systems	
W 1 10	Chapter 15	
week 10	HW #9 due	

	Applications: Metals, Insulators, Semiconductors, 2-d systems
Week 11	HW #10 due
	2nd midterm
	Modern Applications
	Chapter 16
Week 12	No Homework due this week
	Modern Applications
	Chapter 16
Week 13	HW #11 due
	Modern Applications
	Chapter 16
Week 14	HW #12 due
Final Exam: Time TBA, Location: TBA	

Weeks 11-14: Modern Physics Applications chosen from <varies by instructor>:

- Atomic, Molecular & Optical Physics
- Biophysics
- Condensed Matter Physics
- High Energy Physics
- Nuclear Physics
- Astrophysics/Cosmology
- Quantum Information Processing